Ideal clutters that do not pack

نویسندگان

  • Ahmad Abdi
  • Gérard Cornuéjols
  • Kanstantsin Pashkovich
چکیده

For a clutter C over ground set E, a pair of distinct edges e, f ∈ E are coexclusive if every minimal cover contains at most one of them. An identification of C is another clutter obtained after identifying coexclusive edges of C. If a clutter is non-packing, then so is any identification of it. Inspired by this observation, and impelled by the lack of a qualitative characterization for ideal minimally non-packing (mnp) clutters, we reduce ideal mnp clutters even further by taking their identifications. In doing so, we reveal chains of ideal mnp clutters, demonstrate the centrality of mnp clutters with covering number two, as well as provide a qualitative characterization of irreducible ideal mnp clutters with covering number two. At the core of this characterization lies a class of objects, called marginal cuboids, that naturally give rise to ideal non-packing clutters with covering number two. We present an explicit class of marginal cuboids, and show that the corresponding clutters have one of Q6, Q2,1, Q10 as a minor, where Q6, Q2,1 are known ideal mnp clutters, and Q10 is a new ideal mnp clutter.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Resistant sets in the unit hypercube

Ideal matrices and clutters are prevalent in Combinatorial Optimization, ranging from balanced matrices, clutters of T -joins, to clutters of rooted arborescences. Most of the known examples of ideal clutters are combinatorial in nature. In this paper, rendered by the recently developed theory of cuboids, we provide a different class of ideal clutters, one that is geometric in nature. The advan...

متن کامل

Deltas, delta minors and delta free clutters

For an integer n ≥ 3, the clutter ∆n := { {1, 2}, {1, 3}, . . . , {1, n}, {2, 3, . . . , n} } is called a delta of dimension n, whose members are the lines of a degenerate projective plane. In his seminal paper on non-ideal clutters, Alfred Lehman manifested the role of the deltas as a distinct class of minimally non-ideal clutters [DIMACS, 1990]. A clutter is delta free if it has no delta mino...

متن کامل

On a certain class of nonideal clutters

In this paper we define the class of near-ideal clutters following a similar concept due to Shepherd [Near perfect matrices, Math. Programming 64 (1994) 295–323] for near-perfect graphs. We prove that near-ideal clutters give a polyhedral characterization for minimally nonideal clutters as near-perfect graphs did for minimally imperfect graphs. We characterize near-ideal blockers of graphs as b...

متن کامل

The Packing Property

A clutter (V;E) packs if the smallest number of vertices needed to intersect all the edges (i.e. a transversal) is equal to the maximum number of pairwise disjoint edges (i.e. a matching). This terminology is due to Seymour 1977. A clutter is minimally nonpacking if it does not pack but all its minors pack. A 0,1 matrix is minimally nonpacking if it is the edge-vertex incidence matrix of a mini...

متن کامل

Bounding the Projective Dimension of a Squarefree Monomial Ideal via Domination in Clutters

We introduce the concept of edgewise domination in clutters, and use it to provide an upper bound for the projective dimension of any squarefree monomial ideal. We then compare this bound to a bound given by Faltings. Finally, we study a family of clutters associated to graphs and compute domination parameters for certain classes of these clutters.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016